Простой счетчик Гейгера

Счетчик Гейгера — это просто

В связи с экологическими последствиями деятельности человека, связанной с атомной энергетикой, а также промышленностью (в том числе военной), использующую радиоактивные вещества как компонент или основу своей продукции изучение основ радиационной безопасности и радиационной дозиметрии становится сегодня достаточно актуальной темой. Помимо природных источников ионизирующего излучения с каждым годом все больше и больше появляется мест, загрязненных радиацией впоследствии человеческой деятельности. Таким образом, чтобы сохранить свое здоровье и здоровье своих близких необходимо знать степень зараженности той или иной местности или предметов и пищи. В этом может помочь дозиметр – прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени.

Прежде чем приступать к изготовлению (или же покупке) данного устройства необходимо иметь представление о природе измеряемого параметра. Ионизирующее излучение (радиация) – это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество. Разделяется на несколько видов. Альфа-излучение представляет собой поток альфа частиц – ядер гелия-4, альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги, поэтому опасность представляет в основном при попадании внутрь организма. Бета-излучение – это поток электронов, возникающих при бета-распаде, для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров. Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом, для защиты эффективны тяжелые элементы (свинец и т.п.) слоем в несколько сантиметров. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

Для регистрации ионизирующего излучения в основном используются счетчики Гейгера-Мюллера. Это простое и эффективное устройство обычно представляет собой цилиндр металлический или стеклянный металлизированный изнутри и тонкой металлической нити, натянутой по оси этого цилиндра, сам цилиндр наполняется разреженным газом. Принцип работы основан на ударной ионизации. При попадании на стенки счетчика ионизирующего излучения выбивают из него электроны, электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, приводящая к размножению первичных носителей. При достаточно большой напряженности поля энергии этих ионов становится достаточной, чтобы порождать вторичные лавины, способные поддерживать самостоятельный разряд, в результате чего ток через счетчик резко возрастает.

Не все счетчики Гейгера могут регистрировать все виды ионизирующего излучения. В основном они чувствительны к одному излучению – альфа, бета или гамма-излучению, но часто так же в некоторой степени могут регистрировать и другое излучение. Так, например, счетчик Гейгера СИ-8Б предназначен для регистрации мягкого бета-излучения (да, в зависимости от энергии частиц излучение может разделяться на мягкое и жесткое), однако данный датчик так же в некоторой степени чувствителен к альфа-излучению и к гамма-излучению.

Однако, приближаясь все-таки к конструкции статьи, наша задача сделать максимально простой, естественно портативный, счетчик Гейгера или вернее сказать дозиметр. Для изготовления этого устройства мне удалось раздобыть только СБМ-20. Этот счетчик Гейгера предназначен для регистрации жесткого бета- и гамма излучения. Как и большинство других счетчиков, СБМ-20 работает при напряжении 400 вольт.

Основные характеристики счетчика Гейгера-Мюллера СБМ-20 (таблица из справочника):

Данный счетчик обладает относительно невысокими показателями точности измерения ионизирующего излучения, но достаточными для определения превышения допустимой для человека дозы излучения. СБМ-20 применяется во многих бытовых дозиметрах в настоящее время. Для улучшения показателей часто используется сразу несколько трубок. А для увеличения точности измерения гамма-излучения дозиметры оснащаются фильтрами бета-излучения, в этом случае дозиметр регистрирует только гамма-излучение, но зато достаточно точно.

При измерении дозы радиации необходимо учитывать некоторые факторы, которые могут быть важны. Даже при полном отсутствии источников ионизирующего излучения счетчик Гейгера будет давать некоторое количество импульсов. Это так называемый собственный фон счетчика. Сюда так же относится несколько факторов: радиоактивное загрязнение материалов самого счетчика, спонтанная эмиссия электронов из катода счетчика и космическое излучение. Все это дает некоторое количество «лишних» импульсов в единицу времени.

Итак, схема простого дозиметра на основе счетчика Гейгера СБМ-20:

Схему собираю на макетной плате:

Схема не содержит дефицитных деталей (кроме, естественно, самого счетчика) и не содержит программируемых элементов (микроконтроллеров), что позволит собрать схему в течении короткого времени без особого труда. Однако такой дозиметр не содержит шкалы, и определять дозу радиации необходимо на слух по количеству щелчков. Такой вот классический вариант. Схема состоит из преобразователя напряжения 9 вольт – 400 вольт.

На микросхеме NE555 выполнен мультивибратор, частота работы которого составляет примерно 14 кГц. Для увеличения частоты работы можно уменьшить номинал резистора R1 примерно до 2,7 кОм. Это будет полезно, если выбранный вами дроссель (а может и изготовленный) будет издавать писк – при увеличении частоты работы писк исчезнет. Дроссель L1 необходим номиналом 1000 – 4000 мкГн. Быстрее всего можно найти подходящий дроссель в сгоревшей энергосберегающей лампочке. Такой дроссель и применен в схеме, на фото выше он намотан на сердечнике, которые обычно используют для изготовления импульсных трансформаторов. Транзистор T1 можно использовать любой другой полевой n-канальный с напряжением сток-исток не менее 400 вольт, а лучше больше. Такой преобразователь даст всего несколько миллиампер тока при напряжении 400 вольт, но для работы счетчика Гейгера этого хватит с головой несколько раз. После отключения питания от схемы на заряженном конденсаторе C3 схема будет работать еще примерно секунд 20-30, учитывая его небольшую емкость. Супрессор VD2 ограничивает напряжение на уровне 400 вольт. Конденсатор C3 необходимо использовать на напряжение не менее 400 — 450 вольт.

Далее схема состоит из непосредственно самого счетчика Гейгера RO1 и цепи «озвучивания» импульсов счетчика.

В качестве Ls1 можно использовать любой пьезодинамик или динамик. При отсутствии ионизирующего излучения ток через резисторы R2 – R4 не протекает (на фото на макетной плате пять резисторов, но общее их сопротивление соответствует схеме). Как только на счетчик Гейгера попадет соответствующая частица внутри датчика происходит ионизация газа и его сопротивление резко уменьшается вследствие чего возникает импульс тока. Конденсатор С4 отсекает постоянную часть и пропускает на динамик только импульс тока. Слышим щелчок.

В моем случае в качестве источника питания используется две аккумуляторных батареи от старых телефонов (две, так как необходимое питание должно быть более 5,5 вольт для запуска работы схемы в силу примененной элементной базы).

Итак, схема работает, изредка пощелкивает. Теперь как это использовать. Самый простой вариант – это пощелкивает немного – все хорошо, щелкает часто или вообще непрерывно – плохо. Другой вариант – это примерно подсчитываем количество импульсов за минуту и переводим количество щелчков в мкР/ч. Для этого из справочника необходимо взять значение чувствительности счетчика Гейгера. Однако в разных источника всегда немного разные цифры. В идеальном случае необходимо провести лабораторные замеры для выбранного счетчика Гейгера с эталонными источниками излучения. Так для СБМ-20 значение чувствительности варьируется в пределах от 60 до 78 имп/мкР по разным источникам и справочникам. Так вот, подсчитали количество импульсов за одну минуту, далее это число умножаем на 60 для аппроксимации числа импульсов за один час и все это разделить на чувствительность датчика, то есть на 60 или 78 или что у вас ближе к действительности получается и в итоге получаем значение в мкР/ч. Для более достоверного значения необходимо сделать несколько замеров и посчитать между ними среднеарифметическое значение. Верхний предел безопасного уровня радиации составляет примерно 20 — 25 мкР/ч. Допустимый уровень составляет примерно до 50 мкР/ч. В разных странах цифры могут отличаться.

P.S. На рассмотрение этой темы меня подтолкнула статья о концентрации газа радон, проникающего в помещения, воду и т.д. в различных регионах страны и его источниках.

Счетчик Гейгера с минимумом деталей

Мастер сделал этот счетчик, для идентификации радиоактивных элементов, которые ему нужны для сбора коллекции. Единственный реальный недостаток этого счетчика в том, что он не очень громкий, и он не вычисляет и не отображает количество обнаруженного. Т.е. нельзя получить никаких фактических данных, а только общее представление о радиоактивности, основанное на количестве слышимых щелчков.

Инструменты и материалы:
-Трубка Гейгера СБМ-20;
-Повышающая цепь постоянного тока высокого напряжения демонтированная с такой мухобойки;
-Стабилитроны с суммарным значением около 400 В;
-Резисторы с общем номиналом 5 МОм (мастер использовал пять по 1 МОм);
-Транзистор — типа NPN, использовался 2SC975;
-Пьезо-динамик (может быть демонтирован из старой микроволновки или электронной игрушки);
-1 батарея AA;
-Держатель батареи AA;
-Выключатель;
-Провода;
-Заготовка из дерева, пластика или другого не токопроводящего материала, для использования в качестве подложки;
-Паяльные принадлежности;
-Клевой пистолет;
-Кусачки;
-Инструмент для зачистки проводов;
-Отвертка;




Шаг первый: теория
Счетчик Гейгера (или счетчик Гейгера-Мюллера) — это детектор излучения, разработанный Гансом Гейгером и Вальтером Мюллером в 1928 году. Сегодня почти все знакомы со звуками щелчка, которые он издает, и часто говорят, что это «звук» радиации.

Сердцем устройства является трубка Гейгера-Мюллера. Это металлический или стеклянный цилиндр, наполненный инертными газами, находящимися под низким давлением. Внутри трубки находятся два электрода, один из которых находится под высоким напряжением (обычно 400-600 вольт), а другой заземлен. Когда трубка находится в состоянии покоя, ток не может протекать между двумя электродами внутри трубки. Однако, когда в трубку попадает радиоактивная частица, такая как бета-частица, она ионизирует газ внутри трубки, делая его токопроводящим и позволяя току протекать между электродами на короткое время. Этот кратковременный ток запускает детекторную часть схемы, которая издает слышимый «щелчок». Больше щелчков означает больше излучения. Многие счетчики Гейгера также имеют возможность подсчитывать количество щелчков и вычислять счетчики в минуту, и отображать их на дисплее.

Давайте посмотрим на работу счетчика Гейгера, с другой стороны. Ключевым принципом работы счетчика Гейгера является трубка Гейгера и процесс создания высокого напряжение на одном электроде. Если пользоваться сравнением, это высокое напряжение похоже на крутой склон горы, покрытый глубоким снегом, и все, что требуется, — это крошечная энергия излучения (как у лыжника, спускающегося по склону), чтобы вызвать лавину. Последовавшая за этим лавина несет в себе гораздо больше энергии, чем сама частица.

Поскольку, вероятно, прошло много времени с тех пор, как многие из нас сидели в классе и узнали о радиации, мастер поясняет некоторые ключевые моменты.

Материя и структура атома
Вся материя состоит из крошечных частиц, называемых атомами. Сами атомы состоят из еще более мелких частиц, а именно протонов, нейтронов и электронов. Протоны и нейтроны собраны вместе в центре атома — эта часть называется ядром. Электроны вращаются вокруг ядра.

Протоны — это положительно заряженные частицы, электроны — отрицательно заряженные, а нейтроны не несут заряда и поэтому нейтральны, отсюда и их название. В нейтральном состоянии каждый атом содержит равное количество протонов и электронов. Поскольку протоны и электроны несут равные, но противоположные заряды, то атом нейтрален. Однако, когда количество протонов и электронов в атоме не равно, атом становится заряженной частицей, называемой ионом. Счетчики Гейгера способны обнаруживать ионизирующее излучение — форму излучения, которая может преобразовывать нейтральные атомы в ионы. Три различных вида ионизирующего излучения — это альфа-частицы, бета-частицы и гамма-лучи.

Бета-частицы
Бета-частица — это электрон или позитрон. Позитрон похож на электрон, но несет положительный заряд. Бета-минусовые частицы (электроны) испускаются, когда нейтрон распадается на протон, а бета-плюсовые частицы (позитроны) испускаются, когда протон распадается на нейтрон.

Гамма лучи
Гамма-лучи — это фотоны высокой энергии. Гамма-лучи расположены в электромагнитном спектре, за пределами видимого света и ультрафиолета. Они обладают высокой проникающей способностью, а их способность к ионизации обусловлена тем, что они могут выбивать электроны из атома.

Трубка SMB-20, которая используется в этом проекте, — российского производства. Она имеет тонкую металлическую оболочку, которая играет роль отрицательного электрода, а металлический провод, проходящий через центр трубки, служит положительным электродом. Чтобы трубка могла обнаружить радиоактивную частицу или гамма-излучение, эта частица или луч сначала должны проникнуть через тонкую металлическую оболочку трубки. Альфа-частицы, как правило, не могут этого сделать, поскольку они обычно задерживаются стенками трубки. Другие трубки Гейгера, предназначенные для обнаружения этих частиц, часто имеют специальное окно, называемое альфа-окном, которое позволяет этим частицам попадать в трубку. Окно обычно делают из очень тонкого слоя слюды, и трубка Гейгера должна быть очень близко к источнику альфа излучения, чтобы его обнаружить.





Шаг третий: схема/монтаж
Хотя эта схема построена для трубки СБМ-20, ее можно легко адаптировать для использования других трубок. Просто проверьте конкретный диапазон рабочего напряжения и другие характеристики вашей конкретной трубки и соответствующим образом отрегулируйте. Трубки большего размера более чувствительны, чем трубки меньшего размера, просто потому, что они являются более крупными целями для частиц.

Для работы счетчика Гейгера требуется высокое напряжение. Мастер использует повышающую схему постоянного тока от электронной мухобойки, чтобы поднять 1,5 В от пальчиковой батареи до примерно 600 вольт (первоначально мухобойка работала от 3 вольт, выдавая около 1200 В. для уничтожения мух. Из такой мухобойки можно сделать электрошокер).
Рабочее напряжение СБМ-20 — 400 В, поэтому в схеме используются стабилитроны для регулирования напряжения до этого значения. Мастер использует тринадцать стабилитронов 33 В, но и другие комбинации будут работать так же хорошо, например, стабилитроны 4 x 100 В, если сумма значений стабилитронов равна целевому напряжению, в данном случае 400.
Резисторы используются для ограничения тока. Можно использовать любую комбинацию резисторов, если их значения в сумме составляют около 5 МОм.

Элемент пьезо-динамика и транзистор составляют детекторную часть схемы. Пьезо-динамик издает щелчки, а длинные провода позволяют держать его ближе к уху.

Транзистор увеличивает громкость щелчков. Можно построить схему без транзистора, но щелчки, генерируемые схемой, будут еле слышимыми. В схеме используется транзистор 2SC975 (типа NPN).

После сбора всех компонентов мастер смонтировал схему навесным монтажом и закрепил ее на пластике.

Шаг четвертый: о радиоактивных материалах
Счетчик Гейгера будет щелкать каждые несколько секунд только из-за фонового излучения, но есть несколько источников излучения, с которыми можно столкнутся и в быту.

Америций из детекторов дыма
Америций — это искусственный (не встречающийся в природе) элемент, который используется в детекторах дыма ионизационного типа. Эти детекторы дыма очень распространены. Америций в форме диоксида америция нанесен на небольшую металлическую кнопку внутри, установленную в небольшом корпусе, известном как ионизационная камера. На америций обычно наносят тонкий слой позолоты или другого коррозионностойкого металла.

Внутри ионизационной камеры детектора расположены две металлические пластины, расположенные друг напротив друга. К одной из них прикреплена кнопка с америцием, которая испускает постоянный поток альфа-частиц, проходящих через небольшой воздушный зазор и затем поглощающихся другой пластиной. Воздух между двумя пластинами ионизируется и становится, в некоторой степени проводящим. Это позволяет току течь между пластинами, и этот ток может быть обнаружен схемами дымового извещателя. Когда частицы дыма попадают в камеру, они поглощают альфа-частицы и разрывают цепь, вызывая тревогу.

Излучаемое излучение относительно мягкое, но на всякий случай мастер рекомендует:
Храните кнопку америция в безопасном месте подальше от детей, предпочтительно в каком-либо защищенном от детей контейнере.

Никогда не касайтесь лицевой стороны кнопки, на которую нанесен америций. Если вы случайно коснулись лицевой стороны кнопки, вымойте руки.

Урановое стекло
Уран использовался в форме оксида в качестве добавки к стеклу. Наиболее типичный цвет уранового стекла — бледно-желтовато-зеленый, и в 1920-х годах его называли «вазелиновое стекло» (на основании кажущегося сходства с внешним видом вазелинового масла). Количество урана в стекле варьируется от небольшого количества до примерно 2% по весу, хотя некоторые изделия 20-го века были сделаны с содержанием урана до 25%! Большая часть уранового стекла слабо радиоактивна.

Можно подтвердить содержание урана в стекле с помощью ультрафиолетового света. Все урановые стекла флуоресцируют ярко-зеленым цветом независимо от их цвета в естественном освещении. Чем ярче светится стекло в ультрафиолетовом свете, тем больше в нем урана.

Почему добавляли уран?
Открытие и выделение радия в урановой руде (настуран) Марией Кюри послужило толчком к развитию добычи урана для извлечения радия, который использовался для изготовления светящихся в темноте красок для часов и циферблатов самолетов. В результате осталось огромное количество урана в виде отходов, поскольку для извлечения одного грамма радия требуется три тонны урана.

Можно ли сделать счетчик Гейгера своими руками

Уровень радиации можно измерить с помощью самодельного счетчика Гейгера, работающего с Arduino Shield или Arduino Nano. Он может определять ионизирующие частицы альфа-, бета- и гамма-излучения. Когда они проходят через активный объем детектора, то ускоряются электрическим полем, создавая импульс тока, который сигнализирует о прохождении излучения. Контролируемые небольшие дозы излучения используют в медицинских целях. Неконтролируемые большие дозы радиоактивного излучения очень опасны, они убивают все живое на планете.

Что такое счетчик Гейгера

Счетчик Гейгера, а если быть более точным, то Гейгера-Мюллера — это измерительное устройство, применяемое для измерения уровня радиации в окружающем пространстве. Он входит в группу детекторов излучения, подгруппу детекторов газа.

Как следует из названия, они имеют измеритель, заполненный инертным газом при низком давлении 0.1 атм. В центре камеры расположен электрод, между электродом и металлической стенкой создается электрическое напряжение.

Как работает счетчик Гейгера

Детектор, заполнен газом, к которому приложено электрическое напряжение. В тот момент, когда излучение взаимодействует с газом, оно вызывает ионизацию, и этот небольшой сигнал усиливается. Коэффициент усиления зависит от напряжения.

В то время, когда излучение проникает в газовую среду, молекулы газы в трубке под действием процесса ионизации, начинают отдавать частицы. Электрон притягивается положительным зарядом анода, а положительно заряженные ионы отбрасываются к стенке трубки. После этого электрон проходит по проводам, образующим электрическую цепь, и рекомбинируется с ионом. Измерительная часть счётчика Гейгера — это устройство, которое измеряет этот поток электронов.

Когда электрон и ион ускоряются по направлению к электроду, на стенках камеры создается энергия из-за высокого напряжения, в результате чего они сталкиваются с другими атомами и подавляют электроны в процессе вторичной ионизации, что многократно усиливают исходный сигнал до уровня, который может быть измерен.

Важно! В счетчике Гейгера напряжение настолько велико, что ионизируется весь газ в газовой камере, что обеспечивает очень высокую чувствительность к поступающему излучению.

Допустимые области измерения счетчиков Гейгера

Если счетчик Гейгера откалиброван для измерения мощности дозы радионуклида Cs-137, он будет полезен только при этом виде измерения. Но если пытаться измерить таким прибором, например, излучение кобальта 60 (Co-60), результат будет неточным. Поскольку этот измеритель сможет зафиксировать только половину фактической дозы излучения, в связи с тем,что Co-60 излучает в два раза больше энергии, чем Cs-137. В тех случаях, когда радионуклиды обладают меньшей энергией, детектор, наоборот, покажет более высокую мощность дозы, чем она есть на самом деле.

Важно! Счетчик Гейгера будет давать точное показание мощности дозы излучения только в том случае, когда он измеряет тот радиоактивный материал, по которому он был откалиброван. Следовательно, счетчики Гейгера не во всех случаях являются подходящими приборами для измерения дозы облучения.

Для более широкого диапазона измерения уровня радиации применяют счетчики Гейгера с компенсацией энергии. Они позволяют установить точные дозы излучения в широком диапазоне.

Области измерения счетчиков Гейгера в мР/ч или мкР/ч:

  1. Альфа-излучение — заряженные частицы, которые образуются в результате радиоактивного распада ядра. Их проникновение невелико и останавливается простым листом бумаги.
  2. Бета-излучение — это электроны или позитроны, заряженные частицы со средним уровнем проникновения. Их останавливает алюминиевая пластина.
  3. Гамма-излучение — самый опасный вид излучения, их возможно остановить слоем свинца различной толщины.
  4. Можно также при измерении альфа- или бета-излучения определить количество импульсов в минуту (cpm), либо количество импульсов в секунду (cps), в зависимости от типа используемого измерителя.

Самостоятельное изготовление счетчика Гейгера от А до Я

В этом варианте предлагается изготовить детектор радиации с использованием комплектующих, которые можно найти в свободном доступе в торговой сети. Для того чтобы такой детектор заработал, потребуется чувствительный элемент — трубка Гейгера, с питанием около 400 В постоянного тока и индикатор, или простой динамик. Когда ионизирующее излучение воздействует на газ в счетчике Гейгера , начинается движение электронов, газ в трубке становится проводящим, напряжение подается на динамик, и он начинает щелкать.

Для более эффективного контроля уровня радиации предлагается использовать программу Arduino Nano, которая подсчитывает импульс в трубке в течение определенного времени и ЖК-дисплей, на котором будет отражаться предупреждение об уровне радиации и заряде батареи. В качестве источника питания используется батарея 18650. Поскольку для Arduino требуется 5 В, необходимо установить преобразователь постоянного тока и литий-ионное зарядное устройство, чтобы детектор был полностью автономным.

Необходимые компоненты схемы детектора

Для того чтобы собрать представленную схему потребуются приобрести следующие детали:

  1. Преобразователь высокого напряжения NoEnName_Null. Вход 3–5 В, выход до 300–1200 В. Размер модуля: около: 25×48 мм. Выходной ток максимум 50 мА, регулируемый модуль блока питания.
  2. Зарядное устройство Tikta Mini MICRO USB 1A TP4056. Литий-ионная плата 1×5 V позволяет заряжать аккумулятор с помощью разъема Mini USB или входа 4.5–5.5 В.
  3. Преобразователь напряжения DROK Mini DC Volts 1V — 5V, неизолированный модуль BOOST. Размеры печатной платы: 14.1×18.8×5.5 мм, входное напряжение: 1–5 В постоянного тока, выходное напряжение: 5.1–5.2 В постоянного тока, одиночный литиевый вход с выходным током 1–1.5 A.
  4. Arduino Nano V3.0 — плата ELEGOO Nano CH340 / ATmega328P без USB-кабеля. Совместимая с Arduino Nano V3.0.Nano использует чипы ATmega328P и CH340, с большим количеством аналоговых входных контактов и встроенной перемычкой + 5V AREF. Есть возможности макета Boarduino и Mini + USB с меньшими размерами, которое хорошо работает с Mini или Basic Stamp. Может получать питание через USB-соединение Mini-B, нерегулируемый внешний источник питания 7–12 В (контакт 30) или регулируемый внешний источник питания 5 В (контакт 27). Источник питания автоматически выбирает источник с самым высоким напряжением.
  5. OLED-дисплей HiLetgo 0,91 » для Arduino STM32, подсветка не нужна, поскольку имеется самоподсветка. Цвет дисплея: синий. Использует распространенную шину I2C и работает на драйвере дисплея SSD1306. OLED с высоким разрешением для любого проекта микроконтроллера. 128×32 пикселей дает хороший четкий текст, может работать от 3.3 В. Разборчивый текст даже с 4-мя строками. Напряжение 5 В.
  6. Комплект резисторов 10М и 10К, соответствующих требованиям RoHS.
  7. Монолитный многослойный керамический конденсатор 470pf Hilitchi 550Pcs, допуск емкости: ± 5%. Основной материал: керамика. Цвет: желтый. Отличная влагостойкость, миниатюрный размер, большая емкость, надежная работа. Широкое применение в компьютерах, обработке данных, телекоммуникациях и промышленном управлении.
  8. Мини-кнопочный переключатель DPDT с мгновенным выходом, uxcell 6-контактный квадратный 7×7 мм, количество контактов: 6, шаг штифта: 4.5×1 мм, длина штифта 3.5 мм. Материал пластик, вес: 24 г.

Важно! Также потребуется аккумулятор, дополнительный активный пьезозуммер и сам счетчик Гейгера. Для него можно применить старую лампу, сделанную в СССР, под названием STS-5 и подобрать корпус. В данном примере он распечатан на 3D принтере.

Пошаговая инструкция изготовления счетчика Гейгера на Arduino Nano своими руками

Первое, что нужно сделать, это установить с помощью этого потенциометра напряжение на высоковольтном DC-DC, для STS-5 это примерно 410 V. Затем просто соединяют все модули по этой схеме.

Важно! Лучше использовать готовые провода, это повысит устойчивость конструкции и можно будет собрать устройство на рабочем столе, а затем просто вставить его в корпус. Потребуется также подключить минус высоковольтного преобразователя и вывести его, просто припаяв перемычку.

Поскольку Arduino Nano нельзя подключать к 400 В, выполняют простую транзисторную схему: двухточечная проводка помещается в термоусадочную трубку и прямо в разъем вставляется резистор 10 МОм от + 400 В.

Дальше подключают дисплей к подсоединяемому кабелю, тщательно изолируют, поскольку он очень близко расположен к высоковольтному модулю.

После того как сборка сделана, устройство размещают в футляр, и проверяют работоспособность. Скорее всего, он покажет допустимый уровень радиации.

Такая схема с Arduino Nano имеет большие возможности для реконструкции, например, можно добавить большой дисплей, чтобы рисовать графику, и использовать модуль Bluetooth, чтобы передавать информацию дистанционно.

Как сделать счетчик Гейгера из готового комплекта

Практически на всех крупных международных торговых онлайн-площадках можно заказать готовые наборы для изготовления счетчика Гейгера стоимостью от 2500–5000 руб. В каждом наборе проверенные детали и платы, а также подробная инструкция сборки.

Наиболее популярные модели комплектов счетчиков Гейгера:

  1. KKmoon для обнаружения 20–120 мР/ч гамма-лучей и 100–1800 мР/ч бета-лучей. Поддерживает большинство трубок Гейгера: M4011, STS-5, SBM20, J305. Имеет звуковую и световую сигнализация, может подключиться к микроконтроллеру, а затем отобразить на ЖК-дисплее. Совместим с компьютером (ПК) MatLab для сбора, анализа и обработки данных.
  2. Baugger имеет модуль детектор ядерного излучения с ЖК-дисплеем, для обнаружения 20–120 мР/ч гамма-лучей и 100–1800 мР/ч бета-лучей. Поддерживает большинство трубок Гейгера: M4011, Sts-5, Sbm 20, J305. Оборудован звуковой и световой сигнализацией может подключиться к микроконтроллеру, а затем отобразить на ЖК-дисплее. Совместим с компьютером (ПК) MatLab для сбора, анализа и обработки данных.
  3. Kshzmoto, набор деталей счетчика Гейгера с ЖК-дисплеем. Имеет блок питания 5 В или аккумулятор 3×1.5 В. Батарея 4×1.2 В, ток: 30–120 мА. Диапазон измерения 20–120 мР/ч гамма-лучей и 100–1800 мР/ч бета-лучей. Оснащен звуком и световой сигнализацией. Может поддерживаться рабочее напряжение трубки Гейгера 330–600 В.
  4. YINCHIE Mukuai54 DIY — модуль детектора ядерного излучения с ЖК-дисплеем DIY. Поддерживает большинство трубок Гейгера: M4011, STS-5, SBM 20, J305. Оборудован звуковым и световым звуком, может работать с ПК.

Таким образом, сделать счетчик Гейгера своими руками на Arduino Nano несложно. Можно самому подобрать комплектующие, и собрать измеритель по проверенной работоспособной схеме, а можно просто купить готовый набор и подключить его схему. Такие дозиметры работают ничуть не хуже тех, которые собираются на промышленных площадках. В сегодняшнее время иметь такое устройство в доме не будет лишним, особенно, отправляясь в путешествие, чтобы найти безопасное место для отдыха или на рынок, чтобы купить экологически чистые продукты.

Видео по теме

Счетчик Гейгера-Мюллера: принцип работы и назначение

В 1908 году физик из Германии Ганс Гейгер трудился в химических лабораториях, принадлежащих Эрнсту Резерфорду. Там же им было предложено испытать счетчик заряженных частиц, представлявший собой ионизированную камеру. Камера являлась электро-конденсатором, который наполняли газом под высоким давлением. Еще Пьер Кюри применял это устройство на практике, изучая электричество в газах. Идея Гейгера – обнаруживать излучения ионов — была связана с их влиянием на уровень ионизации летучих газов.

В 1928 г. немецкий ученый Вальтер Мюллер, работавший с Гейгером и под его началом, создал несколько счетчиков, регистрирующих ионизирующие частицы. Устройства были нужны для дальнейшего исследования радиации. Физика, будучи наукой экспериментов, не могла бы существовать без измерительных конструкций. Были открыты только несколько излучений: γ, β, α. Задача Гейгера состояла в том, чтобы измерить чувствительными приборами все виды излучения.

Счетчик Гейгера-Мюллера — простой и дешевый радиоактивный датчик. Это не точный инструмент, который фиксирует отдельные частицы. Техника измеряет общую насыщенность ионизирующего излучения. Физики используют его с другими датчиками, чтобы добиться точности расчетов при проведении экспериментов.

Немного об ионизирующих излучениях

Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет – вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны – это γ-кванты.

Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:

  • γ – фотон;
  • α – ядро атома гелия;
  • β – электрон с высокой энергией.

От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.

Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.

Устройство и принцип работы счетчика Гейгера

Прибор состоит из металлической или стеклянной трубки, в которую закачан благородный газ (аргоново-неоновая смесь либо вещества в чистом виде). Воздуха в трубке нет. Газ добавляется под давлением и имеет примесь спирта и галогена. По всей трубке протянута проволока. Параллельно ей располагается железный цилиндр.

Проволока называется анодом, а трубка – катодом. Вместе они – электроды. К электродам подводится высокое напряжение, которое само по себе не вызывает разрядных явлений. В таком состоянии индикатор будет пребывать, пока в его газовой среде не возникнет центр ионизации. От источника питания к трубке подключается минус, а к проволоке – плюс, направленный через высокоуровневое сопротивление. Речь идет о постоянном питании в десятки сотен вольт.

Когда в трубку попадает частица, с ней сталкиваются атомы благородного газа. При соприкосновении выделяется энергия, отрывающая электроны от атомов газа. Затем образуются вторичные электроны, которые тоже сталкиваются, порождая массу новых ионов и электронов. На скорость электронов по направлению к аноду влияет электрическое поле. По ходу этого процесса образуется электрический ток.

При столкновении энергия частиц теряется, запас ионизированных атомов газа подходит к концу. Когда заряженные частицы попадают в газоразрядный счетчик Гейгера, сопротивление трубки падает, что немедленно снижает напряжение средней точки деления. Затем сопротивление вновь растет — это влечет за собой восстановление напряжения. Импульс становится отрицательным. Прибор показывает импульсы, а мы можем их сосчитать, заодно оценив количество частиц.

Виды счётчиков Гейгера

По конструкции счетчики Гейгера бывают 2 видов: плоский и классический.

Классический

Сделан из тонкого гофрированного металла. За счет гофрирования трубка приобретает жесткость и устойчивость к внешнему воздействию, что препятствует ее деформации. Торцы трубки оснащены стеклянными или пластмассовыми изоляторами, в которых находятся колпачки для вывода к приборам.

На поверхность трубки нанесен лак (кроме выводов). Классический счетчик считается универсальным измерительным детектором для всех известных видов излучений. Особенно для γ и β.

Плоский

Чувствительные измерители для фиксации мягкого бета-излучения имеют другую конструкцию. Из-за малого количества бета-частиц, их корпус имеет плоскую форму. Есть окошко из слюды, слабо задерживающее β. Датчик БЕТА-2 – название одного из таких приборов. Свойства других плоских счетчиков зависят от материала.

Параметры и режимы работы счетчика Гейгера

Чтобы рассчитать чувствительность счетчика, оцените отношение количества микрорентген от образца к числу сигналов от этого излучения. Прибор не измеряет энергию частицы, поэтому не дает абсолютно точной оценки. Калибровка устройств происходит по образцам изотопных источников.

Также нужно смотреть на следующие параметры:

Рабочая зона, площадь входного окна

Характеристика площади индикатора, через которую проходят микрочастицы, зависит от его размеров. Чем шире площадь, тем большее число частиц будет поймано.

Рабочее напряжение

Напряжение должно соответствовать средним характеристикам. Сама характеристика работы — это плоская часть зависимости количества фиксированных импульсов от напряжения. Ее второе название – плато. В этом месте работа прибора достигает пиковой активности и именуется верхним пределом измерений. Значение – 400 Вольт.

Рабочая ширина

Рабочая ширина — разница между напряжением выхода на плоскость и напряжением искрового разряда. Значение – 100 Вольт.

Наклон

Величина измеряется в виде процента от количества импульсов на 1 вольт. Он показывает погрешность измерения (статистическую) в подсчете импульсов. Значение – 0,15 %.

Температура

Температура важна, поскольку счётчик часто приходится применять в сложных условиях. Например, в реакторах. Счетчики общего использования: от -50 до +70 С по Цельсию.

Рабочий ресурс

Ресурс характеризуется общим числом всех импульсов, зафиксированных до момента, когда показания прибора становятся некорректными. Если в устройстве есть органика для самогашения, количество импульсов составит один миллиард. Ресурс уместно подсчитывать только в состоянии рабочего напряжения. При хранении прибора расход останавливается.

Время восстановления

Это промежуток времени, за который устройство проводит электричество после реагирования на ионизирующую частицу. Существует верхний предел для частоты импульсов, ограничивающий интервал измерений. Значение – 10 микросекунд.

Из-за времени восстановления (его ещё называют мертвое время) прибор может подвести в решающий момент. Для предотвращения зашкаливания производители устанавливают свинцовые экраны.

Есть ли у счетчика фон

Фон измеряется в толстостенной свинцовой камере. Обычное значение – не более 2 импульсов за минуту.

Кто и где применяет дозиметры радиации?

В промышленных масштабах выпускают много модификаций счетчиков Гейгера-Мюллера. Их производство началось во времена СССР и продолжается сейчас, но уже в Российской Федерации.

  • на объектах атомной промышленности;
  • в научных институтах;
  • в медицине;
  • в быту.

После аварии на Чернобыльской АЭС дозиметры покупают и рядовые граждане. Во всех приборах установлен счетчик Гейгера. Такие дозиметры оснащают одной или двумя трубками.

Можно ли сделать счетчик Гейгера своими руками?

Изготовить счетчик самостоятельно сложно. Нужен датчик излучения, а его купить смогут далеко не все. Сама схема счетчика давно известна — в учебниках физики, например, её тоже печатают. Однако воспроизвести устройство в домашних условиях сумеет только настоящий «левша».

Талантливые мастера-самоучки научились делать счетчику заменитель, который также способен замерять гамма- и бета-излучения с помощью люминесцентной лампы и лампы накаливания. Также используют трансформаторы от сломанной техники, трубка Гейгера, таймер, конденсатор, различные платы, резисторы.

Заключение

Диагностируя излучения, нужно учитывать собственный фон измерителя. Даже при наличии свинцовой защиты приличной толщины скорость регистрации не обнуляется. У этого явления есть объяснение: причина активности – космическое излучение, проникающее через толщи свинца. Над поверхностью Земли ежеминутно проносятся мюоны, которые регистрируются счетчиком с вероятностью 100%.

Есть и еще один источник фона – радиация, накопленная самим устройством. Поэтому по отношению к счётчику Гейгера тоже уместно говорить об износе. Чем больше радиации прибор накопил, тем ниже достоверность его данных.

Как сделать счетчик Гейгера своими руками: схема сборки бытового дозиметра в домашних условиях

Привет всем! Как ваши дела? Сегодня я хочу показать вам, как сделать счетчик Гейгера своими руками. Я начал создавать этот прибор примерно в начале прошлого года. С тех пор он претерпел мою лень и три полных переосмысления.

Идея сделать бытовой дозиметр появилась в самом начале моего увлечения электроникой, идея радиации всегда интересовала меня.

Шаг 1: Теория

Итак, дозиметр — на самом деле очень простой прибор, нам нужен чувствительный элемент, в нашем случае трубка Гейгера, питание для неё, обычно около 400V постоянного тока и индикатор, в простейшем случае это может быть обычный динамик. Когда ионизирующее излучение ударяется о стенку счётчика Гейгера и выбивает из неё электроны, оно заставляет газ в трубке стать проводником, поэтому ток идёт прямо на динамик и заставляет его щелкать, если вам интересно, то в сети можно найти гораздо лучшее объяснение.

Я думаю, все согласятся, что щелки — не самый информативный индикатор, тем не менее, у него есть возможность оповещать об увеличении радиационного фона, но подсчет радиации при помощи секундомера для более точных результатов — штука довольно странная, поэтому я решил добавить устройству немного мозгов.

Шаг 2: Дизайн

Давайте перейдём к практике. В качестве мозгов я выбрал Ардуино нано, программа очень проста, она считает пульс в трубке за определенное время и отображает его на экране, также она показывает милый значок-предупреждение о радиационной опасности и уровень заряда батареи.

В качестве источника энергии я использую батарейку 18650, но Ардуино нужно 5V, поэтому я встроил повышающий преобразователь DC-DC и литий-ионный аккумулятор, чтобы сделать устройство полностью автономным.

Шаг 3: Высоковольтный DC-DC

Я хорошо потрудился над высоковольтным источником питания, сделав его вручную, намотав трансформатор примерно на 600 витков на вторичной катушке, упаковав его с МОП-транзистором и PWM на Ардуино. Всё работает, но мне хотелось, чтобы вещи оставались простыми.

Всегда лучше, когда ты можешь просто купить 5 модулей, припаять 10 проводов и получить рабочий девайс, чем наматывать катушки и прикручивать PWM, ведь я хочу, чтобы каждый мог повторить моё устройство. Так что я нашел высоковольтный повышающий конвертер DC-DC, очень странно, но его оказалось очень трудно найти и самые популярные модули имели всего по 100 продаж.

Я заказал его, сделал новый корпус, но когда начал тестирование, он выдавал максимум 300V, в то время как в описании говорилось, что он выдаёт до 620V. Я попытался починить его, но проблема, скорее всего, была в трансформаторе. В любом случае, я заказал другой модуль, и он был другого размера, хотя описание было одинаковым… Я вернул свои деньги за первый модуль, но сохранил его, потому что он давал 400V, которые нам нужны, может быть максимум 450V, вместо 1200 (в китайских измерительных приборах что-то работает совсем неправильно…) В общем, я просто заново открыл спор…

Шаг 4: Компоненты

Итак, в итоге дизайн счетчика Гейгера Мюллера почти полностью состоит из этих модулей:

  • Высоковольтный повышающий конвертер DC-DC (Aliexpress или Amazon)
  • Зарядник (Aliexpress или Amazon)
  • 5V повышающий преобразователь DC-DC (Aliexpress или Amazon)
  • Ардуино нано (Aliexpress или Amazon)
  • OLED—экран на этих фотографиях 128*64, но в итоге я использовал 128*32 (Aliexpress или Amazon)
  • Также нам нужен транзистор 2n3904 (Aliexpress или Amazon)
  • Резисторы 10M и 210K (Aliexpress или Amazon)
  • Конденсатор 470pf (Aliexpress или Amazon)
  • Кнопка-переключатель (Aliexpress или Amazon)

Аккумулятор, опциональную активную пьезо-трещалку и сам счетчик Гейгера я использовал старые советские. Модель STS-5 довольно дешевая и её легко найти на Ибэй или Амазоне, она также совместима с трубкой SBM-20 или любой другой, вам нужно просто задать параметры в программе, в моём случае количество микрорентген в час равно количеству импульсов трубки за 60 секунд. И да, вот модель кейса, напечатанного на 3Д-принтере: ссылка.

Также есть довольно дешевые наборы для создания счетчика Гейгера, которые могут вас заинтересовать: (Aliexpress или Amazon)

Шаг 5: Сборка

Давайте начнём сборку. Первое, что нужно сделать, это настроить вольтаж на высоковольтном DC-DC с потенциометром. Для STS-5 нам нужно примерно 410V. Затем просто спаяйте все модули по схеме, я использовал однопроволочные провода, это повышает стабильность конструкции и даёт возможность собрать устройство на столе, а затем просто поместить его в кейс.

Важный момент состоит в том, что нам нужно соединить минус на входе и выходе высоковольтного конвертера, я просто припаял штекер. Так как мы не можем просто присоединить Ардуино к 400V, нам понадобится простая схема с транзистором, я просто спаял их навесным методом и обернул в термоусадочную трубку, резистор 10MΩ от +400V был закреплен прямо на коннекторе.

Лучше сделать медный кронштейн для трубки, но я просто накрутил провод по кругу, всё работает нормально, не меняйте плюс и минус счетчика Гейгера. Я подсоединил дисплей к съемному кабелю, тщательно его изолировал, так как он располагался очень близко к высоковольтному модулю. Немного горячего клея. И сборка завершена!

Шаг 6: Финал

Помещаем всё в кейс, и мы готовы к тестам. Но у меня нет ничего для тестов в домашних условиях, но, кстати, фоновая радиация должна сработать. Что я могу сказать? Девайс работает. Да, всё верно. Но я вижу множество способов улучшить его, например больший дисплей, чтобы можно было отображать графические элементы, модуль Bluetooth, или использовать Зиверты вместо Рентгена.

Меня девайс устраивает, но если вы улучшите его, пожалуйста, поделитесь вашим устройством! Спасибо за просмотр, увидимся в следующий раз!

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

СЧЕТЧИК ГЕЙГЕРА — СХЕМА И ПЛАТА

Этот проект представляет собой простой счетчик Гейгера, который обнаружит бета-частицы и гамма-лучи. Индикация динамиком, который воспроизводит один щелчок для каждого счета. С добавлением схемы частотомера можно видеть количество микрорентген в секунду. Звуковая версия схемы очень полезна для идентификации радиоактивных предметов, таких как часы со светящимися циферблатами. Схема дозиметра очень экономична и обеспечивает много часов работы от одной 9 В батареи Крона.

Предполагалось, что будет установлен счетчик Гейгера типа DOI-80, так как устройство должно было иметь минимальное энергопотребление и быть как можно более дешевым. Схема потребляет минимальный ток и преобразователь работает на частоте 50 кГц. Измеритель радиации характеризуется наличием дешевых элементов — можно купить их в любом магазине электроники.

Схема самодельного счетчика Гейгера

Давайте перейдем к принципиальной схеме:

Основой является двухтактный преобразователь, приводимый в действие генератором на основе вентилей NAND. Рабочая частота около 50 кГц поступает на 2 транзистора. К коллекторам транзисторов включается трансформатор.

Генератор управляется операционным усилителем U2A, который измеряет выходное напряжение инвертора. Если оно превышает установленное значение, низкий уровень будет подаваться на вход 13 логического элемента U1D и вход 5 U1B. Генератор остановится и оба транзистора отключатся. Это условие будет поддерживаться до тех пор, пока выходное напряжение не упадет примерно на 20 В ниже уровня, отключающего инвертор.

На практике генератор инвертора отключается в течение большей части времени и начинает лишь периодически перезаряжать выходной конденсатор высокого напряжения. Примерная осциллограмма переключения напряжения на генераторе далее:

В схеме имеется три линии напряжения:

  1. Напряжение питания, питающее преобразователь и операционные усилители, это напряжение может быть любым в диапазоне 4 — 15 В.
  2. Напряжение +3,3 В от стабилизатора LP2950 (можно использовать любой другой на 3,3 В с низким потреблением мощности) является опорным напряжением для операционного усилителя U2A. В связи с использованием +3,3 В для питания цифровой части, микросхемы TTL должны быть серии HC (напряжение питания 2-6 В). Они характеризуются низким энергопотреблением.
  3. Напряжение 490 В от преобразователя и умножителя, питающее счетчик Гейгера и схему делителей напряжения R2, R3, R4. Чтобы еще больше снизить энергопотребление, этот отдел может быть переработан с использованием в 5 раз более высоких сопротивлений. Входное сопротивление U2A настолько велико, что оно не будет нагружать такой делитель. Выходное напряжение регулируется потенциометром R4.

Сигнал от счетчика Гейгера формируется операционным усилителем U2B и подается на моностабильный триггер U4A, а затем выходной импульс триггера управляет громкоговорителем.

Используемые интегральные микросхемы имеют очень низкое энергопотребление (порядка микроампер), поэтому ток от источника питания, в основном является результатом работы преобразователя. Удалось достичь потребления 1 мА от батареи 9 В с фоновым излучением (и 2-3 мА при приближении к радиоактивному элементу).

Советы по сборке дозиметра

Конденсаторы C2, C5, C6 должны иметь минимальное рабочее напряжение 600 В. Конденсатор С6 должен быть 22-220 нФ.

Трансформатор наматывался на сердечник F2001, L9, 4.0, AL400. Первичная обмотка 2×70 витков проводом 0,15 мм, вторичная 2000 витков тем же проводом. Это оптимально для батареи 9 В. Если используется более низкое напряжение питания или прибор требует напряжения выше 500 В, может потребоваться намотка большего количества витков на вторичной стороне.

Если получается, можете намотать 3000 витков, потому что выходное напряжение в любом случае контролируется. Проволока может быть наименьшей доступной толщины. В трансформаторе выбран зазор так, чтобы потребляемый ток был как можно ниже (минимум выходил при зазоре около 0,5 мм). Меньший и больший зазор вызывал большее потребление тока.

Вторая версия схемы дозиметра

В ещё одной версии счётчика Гейгера исключен стабилизатор 3,3 В, используя цепи CMOS серии 4000, которые имеют широкий диапазон рабочих напряжений, потребляя меньше тока чем 74HCT. Необходимый вольтаж теперь обеспечивает автоматически LM385, с током около 10 мкА.

Решено не использовать микросхему 555 в CMOS-версии в качестве моностабильного триггера, поскольку она потребляет больше тока, чем 4098, и, кроме того, в стабильном состоянии замыкает резистор в ветви RC на землю, что дополнительно вызывает протекание ненужного тока.

Под операционный усилитель, измеряющий +490 В использовался программируемый чип LM4250, потому что он дешев и доступен, можем установить потребляемую мощность (резистор R7) на очень маленькое значение — гораздо меньше, чем другие известные операционные усилители.

LM4250 работает как операционный усилитель, в котором потребление тока определяется R7. Если вы используете другой усилитель, не паяйте его. Все синхронизирующие конденсаторы также были уменьшены до минимума, чтобы минимизировать токи перезарядки.

Что касается детекторов — счетчиков радиации, существует много типов, например, STS-5, DOB-50, DOB-80, DOI-30, DOI-80, даже отечественный СБМ-2.

Счетчики Гейгера, в зависимости от конструкции, должны питаться напряжением 200-1000 В. Лучше всего подавать на него более высокое напряжение и следить за количеством импульсов. Но если происходит резкое увеличение количества импульсов, уменьшите напряжение примерно на 50 В — и при таком напряжении прибор должен работать. С резистором, который соответствует лампе, лучше не опускаться ниже 2,2 МОм. Предпочтительно 4,7 или 5,6 мегаом. Счетчики Гейгера не любят перегружаться, они от этого изнашиваются.

Потребляемая мощность импульсная, импульс 4 мс 30 мА каждые 1,2 с. В оставшийся период потребляемый ток не превышает 150 мкА. Среднее не превышает 400 мкА. В этом случае батарея на 9 В должна работать в течение месяца даже непрерывной работы. А тут можете скачать файлы

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Spam Protection by WP-SpamFree

Adblock
detector
!-- Yandex.Metrika counter -->